Philadelphia University Faculty of Engineering

Student Name: Student Number

Dept. of Computer Engineering Final Exam, Second Semester: 2013/2014

Course Titles	Engineering Analysis II (630262)	Date: 4/6/2014
Course The: Course No:		Time Allowed: 2 hours
		No. of Pages: 3

NOTES:

• Round ALL your calculations to 4 significant digits

• Angles for trigonometric functions are in radian scale

Please choose your section:

Instructor:	\Box Dr. Mohammed Mal	ndi 🛛 🗆 Eng. Anis Na	zer	🗆 Eng. Mutee	eah Al-Jawarneh
Lecture time:	ح ث خ 10:10 🗆	ح ث خ 12:10 🗆		ح ث خ 14:10	ن ر 11:15 🛛

Question 1:

Use **<u>false position</u>** method to find the root of the equation

 $(x-4)^2(x+2)=0$ Start with $x_L=-2.5$ and $x_U=-1$ and find x_{m0} , x_{m1} , and x_{m2}

Question 2:

Perform **two Gauss-Seidel iterations** to approximate the solution of the following system of linear equations, start with $x_0 = y_0 = z_0 = 0$:

$$2x-3=y$$

 $4y+x=3+2z$
 $x+2y=10-4z$

Question 3:

The table below shows the pressure of water vapor at different temperatures, approximate the pressure at 90 $^{\circ}C$ using **Lagrange interpolation with <u>a third order polynomial</u>**

Temperature ($^{\circ}C$)	44.5	61.7	82.3	100
Pressure (mm Hg)	178	209	397	760

(5 points)

(5 points)

(5 points)

The following table gives information on ages and cholesterol levels for a random sample of 5 men, where *x* is the age and *y* is the cholesterol level. Use **non-linear regression** to find the exponential relation $y = Ce^{Dx}$

x : Age	58	69	43	39	63
<i>y</i> : Cholesterol level	189	235	193	177	154

Question 5:

a) Solve the differential equation using **Euler method** with a step size 0.2 to approximate y(1).

$$y' = \frac{x}{y}$$
, where $y(0.4) = 1.077$

b) Find the relative error in each step if the true solution is $y^2 = 1 + x^2$

Question 6:

Approximate $\int_{1.17}^{2.37} f(x) dx$ for the function in the given table using :

a) Composite Trapezoidal method with 9 sample points

b) Composite 1/3 Simpson Method with 5 sample points

c) The true value of the integral is -0.22347, calculate the relative error in parts (a) and (b), which approximation is better?

X	f(x)
1.02	0.52
1.17	0.39
1.32	0.25
1.47	0.10
1.62	-0.05
1.77	-0.20
1.92	-0.34
2.07	-0.48
2.22	-0.60
2.37	-0.72
2.52	-0.81
2.67	-0.89

<u>(5 points)</u>

<u>(5 points)</u>

Choose the correct answer:

1) Assume	$\sqrt{2}$ =1.414213562	, how many significant digits are true if you approxim	mate $\sqrt{2}$	by 1.414
a) 1	b) 2	c) 3 d) 4		

2) Use Newton-Raphson iterations to solve: $x^3 - 1 = x$. If you start with $x_0 = 1.5$, then $x_1 = a$ (a) 1.3478 (b) 1.325 (c) 1.781 (d) 1.148

3) Assume that the eigen values of $\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 8 & -2 \end{bmatrix}$ and $\begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} + \begin{bmatrix} I \end{bmatrix}$ then the eigen values of $\begin{bmatrix} B \end{bmatrix}$ are: a) $\lambda_1 = 2$, $\lambda_2 = -4$ b) $\lambda_1 = 4$, $\lambda_2 = -8$ c) $\lambda_1 = 3$, $\lambda_2 = -3$ d) $\lambda_1 = 3$, $\lambda_2 = -5$

4) For the differential equation y' = y with y(1) = 1. Using Runge-Kutta method (RK2) with a step-size of 0.5, then y(1.5) =

a) 1.25 b) 2.25 c) 1.5 d) 1.625

GOOD LUCK